A Convenient Preparation of N －Alkyl－2，5－ dihydroisoxazoles from O－Allyl Oximes

TANG，E E^{a}（汤峨）LIN，Xiang－Jin ${ }^{a}$（林向进）HUANG，Xian ${ }^{\text {a，b }}$（黄宪）
${ }^{a}$ Department of Chemistry，Zhejiang University（Xixi Campus），Hangzhou，Zhejiang 310028，China
${ }^{b}$ State Key Laboratory of Organometallic Chemistry，Shanghai Institute of Organic Chemistry，
Chinese Academy of Sciences，Shanghai 200032，China

Abstract

The organoselenium－induced ring－closure reaction of O－allyl oximes gave cyclic iminium salts，which reacted with Grignard reagents to produce N－alkyl－4－phenylselenoisoxazolidines．2，5－Dihydroisoxazoles could be obtained in good yields by subsequent selenoxide syn－elimination．

Keywords organoselenium，O－allyl oximes，2，5－dihydroisoxazole，selenoxide syn－elimination，intramolecular cyclization

Introduction

2，5－Dihydroisoxazoles are synthetically useful in－ termediates．${ }^{1}$ Reports concerning the synthesis of 2,5 － dihydroisoxazoles include the modification of cyclic compounds ${ }^{2-4}$ and intermolecular cyclization reaction．${ }^{5,6}$ However to the best of our knowledge，the synthesis of N－alkyl－2，5－dihydroisoxazoles via intramolecular cycli－ zation，especially the synthesis of N－tertiary alkyl－2，5－ dihydroisoxazole has not been reported．Herein，we wish to report a facile and efficient synthesis of N－alkyl－2，5－dihydroisoxazoles via electrophilic sele－ nium－induced intramolecular cyclization followed by deselenenylation reaction of O－allyl oximes．

Examination of the general skeleton of 2,5 －dihydr－ oisoxazolines 5 showed us a possibility that the $\mathrm{C}(3)$－ $\mathrm{C}(4)$ double bond might be formed via oxida－ tive－syn－selenoxide elimination of intermediate isoxa－ zolidines 4 ，which could be obtained by sele－ nium－induced intramolecular cyclization of O－allyl oximes 1 followed by the reaction of cyclic iminium salts $\mathbf{3}$ with Grignard reagents（Scheme 1）．Tiecco et al．${ }^{7}$ have reported that cyclic iminium salts $\mathbf{3}$ could react with water and NaBH_{4} to afford isoxazolidines．How－ ever，the addition of Grignard reagents to the cyclic iminium salts $\mathbf{3}$ has not been reported．Therefore，treat－ ment O－allyl oxime 1a with phenylselenenyl bromide at room temperature for 1.5 h was followed by the reaction of the putative cyclic iminium salt of isoxazolidine 3a with methyl magnesium iodide under the different con－ ditions（Table 1）．The reaction of methyl magnesium iodide（ 2.0 equiv．）at room temperature for 3 h pro－ ceeded smoothly to give 2 －（1－phenylethyl）－3－phenyl－4－ phenyl－selenoisoxazolidine 4a in 86% yield（Table 1， entry 7）as a single trans stereoisomer，which was con－

Scheme 1

firmed by ${ }^{1} \mathrm{H}$ NMR spectra．The coupling constant $\left(J_{3,4}\right)$ of 5.6 Hz for $\mathbf{4 a}$（Table 2，Entry 1）was in agreement with the values for $J_{3,4}$ of trans－3－substituted－4－ phenylselenoisoxazolidines ${ }^{7}$ and trans－3，4－substituted isoxazolidines ${ }^{8}$（Scheme 2）．

In order to extend the scope of the method，various O－allyl oximes were chosen as substrates to perform selenium－induced intramolecular cyclization and the subsequent treatment of $\mathrm{R}^{3} \mathrm{MgX}$ to afford N －alkyl－ selenoisoxazolidines 4 in good yields．The results are summarized in Table 2.

As can be seen from Table 2，alkyl（Entries 1，2，5，6， 7），aryl（Entry 3）and allyl（Entry 4）magnesium halide can easily react with the cyclic iminium salts to afford N－substituted isoxazolidines．N－Tertiary alkyl isoxa－ zolidine $\mathbf{4 g}$（Entry 7）was also conveniently obtained from 3－pentanone oxime by the treatment of phenylse－ lenenyl bromide and the methyl magnesium iodide in 80% yield．

[^0]Scheme 2

Table 1 Reaction of MeMgI with 3a under different reaction conditions

Entry	Solvent	Temp. ${ }^{\circ} \mathrm{C}$	Time $/ \mathrm{h}$	Yield ${ }^{a} / \%$ of $\mathbf{5 a}$
1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{THF}(V / V=2 / 1)$	0	1.0	21
2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}(V / V=2 / 1)$	0	2.0	46
3	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}(V / V=2 / 1)$	0	3.0	64
4	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}(V / V=2 / 1)$	0	4.0	67
5	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{THF}(V / V=2 / 1)$	r.t.	1.0	43
6	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}(V / V=2 / 1)$	r.t.	2.0	70
7	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}(V / V=2 / 1)$	r.t.	3.0	86
8	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}(V / V=2 / 1)$	r.t.	4.0	84

${ }^{a}$ Isolated yield.
Table 2 Preparation of N-alkyl-selenoisoxazolidines

Entry	R^{1}	R^{2}	R^{3}	Product a	$\mathrm{Yield}^{b} / \%$
1	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	CH_{3}	$\mathbf{4 a}$	86
2	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathbf{4 b}$	84	
3	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathbf{4 c}$	80	
4	$p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	H	H	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	$\mathbf{4 d}$
5	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	H	CH_{3}	$\mathbf{4 e}$	88
6	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathbf{4 f}$	82	
7	$\mathrm{C}_{2} \mathrm{H}_{5}$	CH_{3}	\mathbf{H}	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathbf{4 g}$

${ }^{a}$ All products were identified by ${ }^{1} \mathrm{H}$ NMR, IR, MS and elemental analysis; ${ }^{b}$ isolated yield.

Then, some oxidative-syn-selenoxide eliminations of the compounds $\mathbf{4}$ were carried out with hydrogen peroxide (30%) at $0{ }^{\circ} \mathrm{C}$, which afforded 2,5 -dihydroisoxazoles 5 in good yields. The results are summarized in Table 3.

In conclusion, we have developed a facile and efficient method for the synthesis of N-alkyl-2,5-dihydroisoxazoles via electrophilic selenium-induced intramolecular cyclization and the reaction of Grignard reagents with cyclic iminium salts followed by deselenenylation reaction. The method presents advantages such as use easily available starting material, mild reaction conditions, simple procedure and good yields.

Experimental

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectra were recorded on a Bruker Advance (400 MHz) spectrometer using CDCl_{3} as the solvent and TMS as the internal standard. Mass spectra ($\mathrm{EI}, 70 \mathrm{eV}$) were recorded on an HP5989B mass spectrometer. Infrared spectra were recorded on a Shimadzu IR-408 spectrometer. Elemental analyses were performed on a Flash EA1112 instrument. Dichloromethane was dried with calcium hydride. THF and $\mathrm{Et}_{2} \mathrm{O}$ were distilled from sodium/benzophenone immediately prior to use.

Table 3 Preparation of 2,5-dihydroisoxazoles

Entry	R^{1}	R^{2}	R^{3}	Product a	Yield $^{b} / \%$
1	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	CH_{3}	$\mathbf{5 a}$	76
2	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathbf{5 c}$	83
3	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	H	CH_{3}	$\mathbf{5 e}$	80
4	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	H	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathbf{5 f}$	80
5	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	CH_{3}	$\mathbf{5 g}$	70

${ }^{a}$ All products were identified by ${ }^{1} \mathrm{H}$ NMR, IR, MS and elemental analysis; ${ }^{b}$ isolated yield.

Typical procedure for the conversion of benzaldehyde O-(3-phenylallyl)oxime 1a into 2-(1-phenyl-ethyl)-3-phenyl-4-phenylselenoisoxazolidine (4a)

To a solution of O-allyl oxime $\mathbf{1 a}(1 \mathrm{mmol})$ in dry dichloromethane (3 mL) was added dropwise a solution of phenylselenenyl bromide (1.1 mmol) in dry dichloromethane (3 mL) at room temperature and the mixture was stirred for 1.5 h . Then, methyl magnesium iodide (2.0 mmol) in diethyl ether (3 mL) was added and the solution was stirred at room temperature for 3 h . The reaction mixture was poured into saturated aqueous ammonium chloride solution (10 mL) and extracted with dichloromethane ($5 \mathrm{~mL} \times 3$). The organic extracts were combined, washed with water and dried over MgSO_{4}. After evaporation of solvent, the oily residue was purified by preparative chromatography on silica gel with ethyl acetate and light petroleum ($1 / 9, V / V$) as eluent to give 351 mg of $\mathbf{4 a}$ in 86% yield. Yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.43(\mathrm{dt}, J=6.4,1.6 \mathrm{~Hz}$, 2H), 7.28-7.01 (m, 13H), 4.42 (dd, $1 \mathrm{H}, J=7.6,9.2$ Hz), 4.14 (dd, $J=7.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{q}, J=6.4 \mathrm{~Hz}$, 1 H), 3.97 (d, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.84 (dt, $J=7.6,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.45(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$; IR (neat) $v: 3060,3028$, 2974, 2931, 2866, 1601, 1578, 1493, 1476, 1453, 1438, 1370, 1069, 1023, 759, 740, $697 \mathrm{~cm}^{-1}$; MS m/z (\%): $408\left(\mathrm{M}^{+}\right), 306,273,117,105$ (100), 79, 77. Anal. calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NOSe}: \mathrm{C} 67.64, \mathrm{H} 5.68, \mathrm{~N} 3.43$; found C 67.43, H 5.60, N 3.51.

2-(1-Phenylpropyl)-3-phenyl-4-phenylselenoisoxazolidine (4b)

Oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.42(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.26-7.02(\mathrm{~m}, 13 \mathrm{H}), 4.41$ (dd, $J=7.6,8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.14(\mathrm{dd}, J=7.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86-3.80(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.80-$ $1.66(\mathrm{~m}, 1 \mathrm{H}), 0.67(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; IR (neat) v: 3059, 3027, 2971, 2931, 2872, 1601, 1578, 1513, 1493, 1476, $1453,1438,1379,1118,1074,1022,738,697 \mathrm{~cm}^{-1}$; MS $m / z(\%): 422\left(\mathrm{M}^{+}\right), 394,306,239,157,119,117,91$ (100), 77. Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NOSe}$: C $68.24, \mathrm{H} 5.97$,

N 3.32; found C 68.41, H 5.86, N 3.41.

2-Benzhydryl-3-phenyl-4-phenylselenoisoxazolidine (4c)

Oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.43-7.05(\mathrm{~m}$, 20 H), 5.03 (s, 1H), 4.38 (dd, $J=7.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (dd, $J=7.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.02 (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (dt, $J=6.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}$); IR (neat) $v: 3061,3028,2974$, 2929, 2865, 1601, 1579, 1493, 1477, 1453, 1381, 1115, 1075, 1028, 741, $698 \mathrm{~cm}^{-1} ; \mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 470\left(\mathrm{M}^{+}\right), 273$, 157, 168, 165, 117, 167 (100), 91, 77. Anal. calcd for $\mathrm{C}_{28} \mathrm{H}_{25}$ NOSe: C 71.47, H 5.36, N 3.00; found C 71.68, H 5.45, N 2.88 .

2-(1-p-Tolyl-but-3-enyl)-3-phenyl-4-phenylselenoisoxazolidine (4d)

Oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.42(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $7.2 \mathrm{~Hz}), 7.27-6.92(\mathrm{~m}, 12 \mathrm{H}), 5.54(\mathrm{ddt}, J=17.6,10.8$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{t}, J=17.6,10.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{dd}$, $J=7.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=7.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ (d, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.83 (dt, $J=5.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.96 $2.83(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$; IR (neat) $v: 3060,3028,2927,2922,2860,1640,1601,1578$, 1513, 1494, 1476, 1453, 1437, 1329, 1180, 1071, 1022, 912, 809, 737, $696 \mathrm{~cm}^{-1}$; MS m/z (\%): $448\left(\mathrm{M}^{+}\right), 410$, 409, 408, 406, 405, 404, 306, 273, 158, 145 (100), 130, 117, 105, 9, 77. Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NOSe}$: C 69.63, H 6.07, N 3.12; found C 69.87, H 5.99, N 3.23 .

2-[1-(4-Chlorophenyl)ethyl]-3-phenyl-4-phenylselenoisoxazolidine (4e)

Oil; ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.42(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.26-7.06(\mathrm{~m}, 12 \mathrm{H}), 4.41$ (dd, $J=7.2,8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.10$ (dd, $J=7.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{q}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.89(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dt}, J=5.6,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.40(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$); IR (neat) $v: 3061,3030$, 2976, 2932, 2867, 1601, 1578, 1493, 1477, 1454, 1437, 1371, 1091, 1014, 908, 833, 733, $698 \mathrm{~cm}^{-1} ;$ MS m / z (\%): $443\left(\mathrm{M}^{+}\right), 306,259,184,157,141,139$ (100), 117, 103, 91, 77. Anal. calcd for $\mathrm{C}_{23} \mathrm{H}_{22}$ ClNOSe: C $62.38, \mathrm{H}$ 5.01, N 3.16; found C 62.53 , H 5.12, N 3.05 .

2-[1-(4-Chlorophenyl)propyl]-3-phenyl-4-phenylselenoisoxazolidine (4f)

Oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.43(\mathrm{~d}, 2 \mathrm{H}, J=$ 8.0 Hz), $7.32-7.01(\mathrm{~m}, 12 \mathrm{H}), 4.42(\mathrm{dd}, J=7.2,9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.12(\mathrm{dd}, J=7.2,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.77(\mathrm{~m}, 3 \mathrm{H})$, $2.19-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 1 \mathrm{H}), 0.66(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$); IR (neat) $v: 3060,3029,2967,2933$, 2874, 1597, 1578, 1491, 1477, 1455, 1437, 1379, 1337, 1175, 1090, 1015, 839, 813, $739,697 \mathrm{~cm}^{-1}$; MS m/z (\%): $457\left(\mathrm{M}^{+}\right), 430,428,306,273,153,125,117(100)$, 103, 91, 77. Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{24}$ ClNOSe: C $63.09, \mathrm{H}$ 5.29 , N 3.07 ; found C 63.31 , H 5.40 N 2.95 .

2-(1-Ethyl-1-methylpropyl)-3-phenyl-4-phenylselenoisoxazolidine (4g)

Oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.43-7.25(\mathrm{~m}$, 10 H), 4.26 (dd, $J=6.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.11 (d, $J=6.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.91(\mathrm{dd}, J=6.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dt}, J=6.0,6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.76-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.35(\mathrm{~m}, 1 \mathrm{H})$, $1.20-1.07(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.66(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; IR (neat) $v: 3060,3028$, 2964, 2931, 2876, 1601, 1578, 1493, 1476, 1453, 1438, 1379, 1069, 1023, 739, $697 \mathrm{~cm}^{-1}$; MS m/z (\%): 388 $\left(\mathrm{M}^{+}\right), 362,361,360(100), 359,358,357,356,306,273$, 184, 117, 91, 77, 70, 43. Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NOSe}$: C 64.94, H 7.01, N 3.61; found C, 65.17, H 7.09, N 3.50 .

Typical procedure for the synthesis of 2-(1-phenylethyl)-3-phenyl-2,5-dihydroisoxazol (5a)

To a solution of the isoxazolidines $\mathbf{4 a}(0.5 \mathrm{mmol})$ in THF (5 mL) was added a solution of 30% hydrogen peroxide (3.5 mmol) in 30 min at $0{ }^{\circ} \mathrm{C}$. The solution was warmed to room temperature and stired for another 30 min . The reaction mixtures were washed with brine $(15 \mathrm{~mL})$ and extracted with dichloromethane $(10 \mathrm{~mL} \times$
3). The organic extracts were combined and dried over MgSO_{4}. After evaporating solvent, the oily residue was purified by preparative chromatography on silica gel with ethyl acetate and light petroleum $(1: 9)$ to afford 95.4 mg of 5 a in 76% yield. Oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.55-6.96(\mathrm{~m}, 11 \mathrm{H}), 4.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.58(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ (q, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.63$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$); IR (neat) $v: 3060,3028,2930,1675$, 1597, 1577, 1492, 1475, 1452, 1372, 1070, 1021, 733, $697 \mathrm{~cm}^{-1}$; MS m/z (\%): $251\left(\mathrm{M}^{+}\right), 174,146,105$ (100), 91, 77. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C} 81.24, \mathrm{H} 6.82, \mathrm{~N}$ 5.57; found C 81.52, H, 6.93, N 5.65.

2-Benzhydryl-3-phenyl-2,5-dihydroisoxazole (5c)

Oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.4-7.1$ (m , 16H), $5.42(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H})$; IR (neat) $v: 3060,3027$, 2930, 2866, 1678, 1600, 1579, 1493, 1478, 1453, 1381, 1075, 1028, 743, $698 \mathrm{~cm}^{-1}$; MS m/z (\%): $313\left(\mathrm{M}^{+}\right), 167$ (100), 146, 91, 77. Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C} 84.31$, H 6.11, N 4.47; found: C 84.09, H 6.18, N 4.35.

2-[1-(4-Chlorophenyl)ethyl]-3-phenyl-2,5-dihydroisoxazole (5e)

Oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.5-6.9$ (m, $10 \mathrm{H}), 4.71(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$; $4.26(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; IR (neat) $v: 3059,2930,2850,1674,1596,1577,1491$, 1476, 1091, 733, $698 \mathrm{~cm}^{-1}$; MS m/z (\%): $286\left(\mathrm{M}^{+}\right), 146$, 141, 139 (100), 103, 91, 77. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Cl}-$ NO: C 71.45, H 5.64, N 4.90; found C 71.65, H 5.74, N
5.03.

2-[1-(4-Chlorophenyl)propyl]-3-phenyl-2,5-dihydroisoxazole (5f)

Oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.6-6.8$ (m, $10 \mathrm{H}) ; 4.74$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.27(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.90-$ $1.83(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; IR (neat) $v: 3059$, 2924, 2852, 1672, 1577, 1491, 1475, 1438, 1090, 1015, 736, $690 \mathrm{~cm}^{-1}$; MS m/z (\%): $300\left(\mathrm{M}^{+}\right), 153$ (100), 155, 146, 117, 91, 77. Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClNO}$: 72.11 , H 6.05, N 4.67; found C 72.32, H 6.13, N 4.57.

2-(1-Ethyl-1-methylpropyl)-3-phenyl-2,5-dihydroisoxazole (5g)

Oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.5-7.15$ (m, $6 \mathrm{H}), 4.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.73-1.32(\mathrm{~m}, 4 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{t}, 6 \mathrm{H}, J=7.6$ Hz); IR (neat) $v: 3059,2932,2874,1668,1578,1491$, $1475,1455,1438,1379,1069,1022,739,693$ $\mathrm{cm}^{-1} ; \mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 231\left(\mathrm{M}^{+}\right), 205$ (100), 146, 117, 91, 77, 70, 43. Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}$: C 77.88, H 9.15, N 6.05; found C 77.61, H 9.04, N 6.18 .

Acknowledgment

We are grateful to Zhejiang Province Foundation of Member of Chinese Academy of Science.

References

1 Lang, S. A.; Lin, J. R.; Lin, Y. I. Isoxazoles and Their Benzo Derivatives, Comprehensive Heterocyclic Chemistry. ISBN 0-08-030706-X; Eds.: Katritzky, A.; Rees, C. W. New York, 1984; Vol. 6, p. 44.
2 Shatzmiller, S.; Shalom, E.; Lidor, R. E. Liebigs Ann. hem. 1983, 906.
3 Adachi, I.; Miyazaki, R.; Kanō, H. Chem. Pharm. Bull. 1974, 22, 70.
4 Adachi, I.; Kanō, H. Chem. Pharm. Bull. 1969, 17, 2201.
5 Jurd, L. Tetrahedron 1975, 31, 2884.
6 Seidl, H.; Huisgen, R.; Knorr, R. Chem. Ber. 1969, 102, 904.

7 Tiecco, M.; Testaferri, L.; Tingoli, M.; Bagnoli, L. J. Chem. Soc. Chem. Commun. 1995, 235.
8 Yakura, T.; Nakazawa, M.; Takino, T.; Ikeda, M. Chem. Pharm. Bull. 1992, 40, 2014.

[^0]: ＊E－mail：huangx＠mail．hz．xj．cn
 Received December 29，2003；revised March 25，2004；accepted May 20， 2004.
 Project supported by the National Natural Science Foundation of China（Nos．20332060，20272050）．

